Your Name:

Biochemistry and Physiology

ID #:

Exam II, March 19, 2003

Prof. Jason Kahn

You have 55 minutes for this exam.

Exams written in pencil or erasable ink will not be re-graded under any circumstances.

You may use a calculator for this exam. No other study aids or materials are permitted.

Generous partial credit will be given, i.e., if you don't know, guess.

Hill equation:
$$Y_{O_2} = \frac{(pO_2)^n}{(p50)^n + (pO_2)^n}$$

Explanations should be concise and clear. I have given you more space than you should need.

Honor Pledge: Please write out the following sentence and sign it, or talk to me about it:

"I pledge on my honor that I have not given or received any unauthorized assistance on this examination."

1. Hemoglobin allostery and oxygen transport (35 pts):

(a; 10 pts) Briefly describe three steps, in terms of changes in protein and heme structure, in the allosteric induction of the R state of hemoglobin upon binding a molecule of O_2 . What one word describes the shape of the resulting binding curve?

BPG (Circle one: R T) Significance:

(b; 25 pts: 5 pts each) For each of the following ligands, indicate whether it binds better to the R state or the T state of hemoglobin, and briefly describe the significance of the preference to physiological oxygen transport.
O ₂ (Circle one: R T) Significance:
H ⁺ (Circle one: R T) Significance:
CO ₂ (Circle one: R T) Significance:
NO (Circle one: R T) Significance:

2. Protein folding and prions (25 pts):

(a; 9 pts) What is the molten globule in protein folding? How does the activity of chaperones in unfolding molten globules enhance the overall rate of folding to the native state?

(b; 8 pts) Name a protein folding disease. Give two possible general causes for disease arising from protein folding defects.

(c; 8 pts) Give two rationales for the prevalence of independently folding 100-200 residue domains in proteins. How might you identify domain boundaries, either experimentally or by sequence analysis (pick one)?

3. Protein sequence analysis and evolution (25 pts):

(a; 6 pts) The sequence below shows three segments of a <u>protein region that binds retinol</u>, a large hydrophobic ligand. <u>Do you think the binding region is an □-helix or a □-sheet? Explain your reasoning</u>. (Exaggerated from the actual sequence given by Branden and Tooze.)

```
\dots Ile — Ala — Val — Glu — Phe — Ser — Val — Asp \dots \dots Met — Ser — Ala — Thr — Val — Lys — Gly — Arg \dots \dots Ala — Asp — Met — Val — Trp — Cys — Phe — Thr \dots
```

chemistry 463 Exam II, 3/19/03	5/7
(b; 5 pts) Which is more conserved in evolution, primary sequence or tertiary structure? Why?	
(c; 9 pts) <u>How are protein sequences used in constructing phylogenetic trees</u> ? Why does the phylogeny of a protein sometimes <u>not</u> match up with the phylogeny of the organisms it inhabits?	
(d; 5 pts) How can the analysis of protein families improve homology searches? Name a progrethat extends BLAST in this way.	<u>am</u>

4. Secondary structure (15 pts):

(a; 6 pts) On the extended peptide representation below, <u>diagram the hydrogen bonding pattern of the []-helix</u>. In other words, draw in which three carbonyls are H-bonded to which three amides.

If you mess up, try again here:

<u>emistry 4</u>	-63 E	<u>ixam II, 3/19/03</u>	7/7
(b; 5 pts) H-bo along	Who nding the	at is the number of residues per turn for the \square -helix? The $i \square i \pm (\text{some region})$ g pattern you diagrammed in (a) connects amino acids that are one above direction of the helix axis. How can this be consistent with a non-integral per turn?	number) another
		y does leucine have a greater propensity to be found in the □-helix than is le has the greater □-sheet propensity of the two?	oleucine,
Score:	1.	Hemoglobin allostery and oxygen transport (35 pts):	
	2.	Protein folding and prions (25 pts):	
	3.	Protein sequence analysis and evolution (25 pts):	
	4.	Secondary structure (15 pts):	
	To	tal: out of 100	
	10		