Chemistry 277, Spring 2019	Your Name:
Prof. Jason Kahn	
University of Maryland, College Park	Your SID #:
General Chemistry and Energetics	
<u>Final Exam (100 points)</u>	Your Section # or time:

May 16, 2019

You have 50 minutes for this exam.

Explanations should be <u>concise</u> and <u>clear</u>. There is extra space on the last page if you need it. You will not need a calculator for this exam. No other study aids or materials are permitted. Generous partial credit will be given, *i.e.*, if you don't know, guess.

Useful Equations:

4 Г 21		(2) (2)
$\sigma_{Y}^{2} = \lim_{N \to \infty} \frac{1}{N} \left[\sum_{i} \left(Y_{i} - \overline{Y} \right)^{2} \right]$	$pH = -\log([H^+])$	$\sigma_Y^2 = \left(\frac{\partial Y}{\partial u}\right)^- \sigma_u^2 + \left(\frac{\partial Y}{\partial v}\right)^- \sigma_v^2 + \cdots$
$R = 0.08206 L \cdot atm/mole K$	$T^2 = 4\pi^2 a^3/GM$	$\ln K_{eq} = -\Delta H^{\circ}/(\mathbf{R}T) + \Delta S^{\circ}/\mathbf{R}$
R = 8.314 J/mole K = 1.987 c	cal/mole $K = N_A k_B$	$SEM = \frac{\sigma}{\sqrt{n}}$
$^{\circ}C = ^{\circ}K - 273.15$	$P(v)dv = Cv^2 exp(-mv^2/2kT)$	$\ln k = (-E_a/RT) + \ln A$
$pH = pK_a + \log([A^-]/[HA])$	$K_p = K_c(\mathbf{R}T)^{\Delta n}$	$K_w = [\mathrm{H}^+][\mathrm{OH}^-] = 10^{-14}$
Absorbance = $\varepsilon c \ell$	$PV = n\mathbf{R}T$	$N(E) = N_0 \omega \exp(-E/k_B T)$
$\mathbf{p}K_a = -\log(K_a)$	$pH(e.p.) = \frac{1}{2} (pK_{a1} + pK_{a2})$	$S = k_B \ln W$
	• ·• ·• •	

Honor Pledge: At the end of the examination time, please write out the following sentence and sign it, or talk to me about it:

"I pledge on my honor that I have not given or received any unauthorized assistance on this examination."

<u>1. Redox titration (25 pts)</u>

In Lab 7B, we used iodate IO_3^- + excess iodide to generate triiodide according to:

 $IO_3^- + 8 I^- + 6 H^+ \rightarrow 3 I_3^- + 3 H_2O_2$

then used the triiodide in excess to oxidize ascorbic acid, as in:

ascorbic acid + $I_3^- \rightarrow$ dehydroascorbic acid + $3I^- + 2H^+$,

(a; 6 pts) Fill in the blanks:

...and then back-titrated with (word): _______to find out how much triiodide was still left

according to this reaction: $I_3^- + 2 _ \longrightarrow 3 I^- + S_4 O_6^{2^-}$.

(b; 4 pts) If you Google for ascorbic acid titration, you can find a few undergraduate labs that do an acidbase titration to determine the purity of commercial vitamin C tablets. Why is this inferior to the redox titration that we and most others use?

(b; 3 pts) Why is periodate used as the primary concentration standard in this lab, as opposed to triiodide or thiosulfate?

(d; 3 pts) What result would you have obtained if the supplier had a QC problem and supplied KIO₃ at 90% purity, with the remainder being entirely soluble and inert? Circle the best answer:

- (*i*) There would have been no change in the experiment.
- (ii) The calculated ascorbic acid concentration would be 10 % too low.
- (iii) The calculated ascorbic acid concentration would be 10 % too high.
- (*iv*) The experiment would have failed completely.

(e; 3 pts) Briefly explain your answer to (d).

(f; 6 pts) Briefly discuss how/why a truly terrible KIO₃ purity of ~ 15 % would have made (*iv*) the correct answer to part (d), and state what you could have done to recover.

2. Acid-base and methods development (16 pts)

Ammonia gas (NH₃) dissolves in water and is in equilibrium with ammonium hydroxide, but the pKb of NH₃ is about 4.75 so the concentration of ammonium cation is low:

$$NH_3(g) + H_2O(l) \rightleftharpoons NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + HO^-(aq)$$

In the Kjeldahl assay for determining protein concentration, a sample is reacted completely with strong acid to convert all organic nitrogen to NH_4^+ (*aq*). The solution is then made basic, and whatever is volatile (i.e. not ions) is distilled into a receiving flask containing an acid, often the weak acid boric acid B(OH)₃.

$$B(OH)_3(aq) + H_2O \rightleftharpoons B(OH)_4^-(aq) + H^+(aq)$$

Then the ammonia and/or ammonium content in the receiving flask is measured.

(Not fun at all fact: The Kjeldahl assay can be fooled by the nitrogen-rich but non-nutritious and poisonous compound melamine, which was used in 2007-2008 by unscrupulous pet food and baby formula manufacturers to simulate protein in their products, killing dogs and babies.)

(a; 4 pts) Why is it necessary to raise the pH

before doing the distillation?

Picture credit: By Roshan220195 - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=18937792

(b; 6 pts) Why is it necessary to collect the distillate in an acidic receiving solution? What are the products of bubbling ammonia into boric acid?

(c; 6 pts) Experimentally, how could you determine the amount of ammonia that ended up in the collection flask?

3. SDL (12 pts)

Describe an unexpected finding from your SDL, why it was a surprise or disappointment, and how you would either make the issue go away by improving your methods or else investigate it further.

4. Nanoparticles and Chelators (22 pts)

(a; 6 pts) Write the name of the physical phenomenon that causes nanoparticles of different sizes to be

different colors: ______. What technique provided the

calibration curve we used to estimate size from λ_{max} ?

(b; 3 pts) What color do you get if all wavelengths are absorbed equally?

- In Lab 6, we used EDTA to rip Zn^{+2} away from a xylenol orange indicator.
- (c; 4 pts) Explain why we used EDTA in this lab instead of just titrating directly with xylenol orange until no further color change was observed.

https://pediaa.com/difference-between-disodium-edta-and-tetrasodium-edta/

(d; 3 pts) Explain why EDTA has such a strong binding affinity for Zn^{+2} (and many other metal ions).

(e; 6 pts) Explain why EDTA is used in the treatment of lead and mercury poisoning, but why large doses should be avoided unless one has actually been poisoned.

5. Using the computer as if it were a piece of apparatus (25 pts)

(a; 12 pts) Sketch a curve showing pH vs. volume of base added with two titration curves, one curve for an acid with a pKa of 3.5 with strong base, and the other curve for the same acid at the same concentration with the same concentration of a weak base. Indicate how you would measure the pKa of the acid.

(d; 6 pts) How would you exercise the micro_movr3 program to see whether its toy model for entropy is an extensive state function (which

is the idea that two moles of a pure substance at a given temperature has twice the entropy of one mole)?