Chemistry 271, Section 21xx	Your Name:	
Prof. Jason Kahn		
University of Maryland, College Park	Your SID #:	
General Chemistry and Energetics	Your Section #:	
Exam I (100 points total)		March 7, 2011

You have 50 minutes for this exam.

Exams written in pencil or erasable ink will not be re-graded under any circumstances.

Explanations should be <u>concise</u> and <u>clear</u>. I have given you more space than you should need. There is extra space on the last page if you need it.

You will need a calculator for this exam. No other study aids or materials are permitted.

Partial credit will be given, *i.e.*, if you don't know, guess.

Useful Equations:

$K_a = [\mathrm{H}^+][\mathrm{A}^-]/[\mathrm{H}\mathrm{A}]$	$pH = -log([H^+])$	$K_b = [BH^+][HO^-]/[B]$
F = ma	$e^{i\pi} + 1 = 0$	PV = nRT
$K_w = [\mathrm{H}^+][\mathrm{HO}^-] = 10^{-14}$	$pH = pK_a + \log([A^-]/[HA])$	pH (e.p.) = $(pK_{a1} + pK_{a2})/2$
$R = 0.08206 \text{ L} \cdot \text{atm/mole K}$	0 °C = 273.15 K	$pK_a = -\log(K_a)$
$K_p = K_c(\mathrm{RT})^{\Delta n}$	$P^2/a^3 = 4\pi^2/MG$	$\nabla \times E = -\partial B / \partial t$

Honor Pledge: At the end of the examination time, please write out the following sentence and sign it, or talk to me about it:

"I pledge on my honor that I have not given or received any unauthorized assistance on this examination."

+1 point extra credit for filling in this box

<u>1.</u> (20 pts) Fill in the Blanks

Read the whole sentence before you fill in the blanks.

(a; 2 pts) K_c and K_p are equal if the	does not
change during the reaction.	
(b; 2 pts) The value of the reaction quotient <i>Q</i> approaches	
as the reaction progresses.	
(c; 4 pts) At equilibrium, the rates of forward and reverse reactions are	
and areas each	ı other.
(d; 4 pts) The	
of a weak acid is a strong base whose pK_b can be predicted from the pK_a of the weak	acid using the
equation	
(e; 2 pts) K_w is the equilibrium constant for the	
(f; 2 pts) The concentration of a solid or a pure liquid is constant as long as some of it is s	still present, so it is
the reaction quotient express	ion.
(g; 4 pts) Ideal gases are defined by two properties: the particles have no	

volume and they ______attract each other.

2. (28 pts) Chemical Equilibria [Adapted from Oxtoby].

(a; 18 pts) Explain the effect of each of the following stresses on the position of the following equilibrium:

$$3 \text{ NO}(g) \rightleftharpoons N_2 O(g) + NO_2(g)$$

The reaction as written is exothermic (releases heat). In each case, briefly explain which way the equilibrium shifts and explain why. The five cases are independent of each other.

- (i) $N_2O(g)$ is added to a mixture at equilibrium without changing the volume or the temperature.
- (ii) The volume of the equilibrium mixture is reduced at constant temperature.
- (iii) The equilibrium mixture is cooled at constant volume.

Questions (iv) and (v) are frequently answered incorrectly. Hint: Think about the Q and its ingredients.

(iv) Gaseous argon (which does not react) is added to the equilibrium mixture and the <u>total</u> gas pressure and the temperature are maintained constant. (Hint: how would this be done?)

(v) Gaseous argon is added to the equilibrium mixture <u>without</u> changing the volume or temperature. (Hint: what will the effect on Q be?)

At equilibrium at 425.6 °C, a sample of *cis*-1-methyl-2-ethylcyclopropane is 73.6 % converted to the *trans* form (i.e. 73.6 % of the material is found in the *trans* form at equilibrium):

(b; 4 pts) Compute the equilibrium constant K for this reaction at 425.6 °C.

(c; 6 pts) Suppose that 0.525 mol of the *cis* compound is initially placed in a 15.0 L vessel and is then heated to 425.6 °C. Compute the equilibrium partial pressure of the *cis* and *trans* compounds. [Hint: you don't actually need the answer to part (a) to solve this.]

3. (22 pts) Acid-base equilibria

Consider four separate titrations of a weak acid HA $(pK_a = 3.7)$ with four different weak bases B2, B4, B6, and B8, with pK_b 's = 2, 4, 6, and 8 respectively.

The family of titration curves is shown in the graph at the right. The total concentration of acid is 0.1 M and the final concentration of base is 0.2 M. Ignore dilution.

(a; 6 pts) What is the dominant reaction occurring in the solution as HA and B are mixed?

Explain why all the titration curves look the same on the left half of the graph.

(b; 6 pts) When the final total concentrations of acid and base are 0.1 M and 0.2 M respectively, what are the concentrations [B] and [BH⁺], approximately (no ICE tables!). Using the base dissociation equilibrium, justify the circled pH values on the right hand side of the graph: show the calculation only once since it is the same for all of them.

(c; 10 pts) The exact calculation of the titration curve of HA with B is complicated, especially at low concentrations of HA and B. We would like to solve for the six concentrations [HA], [A⁻], [B], [BH⁺], [H⁺], and [HO⁻] given the K_a for HA, the K_b for B, and the input concentrations CA and CB. Write down the six equations that we would need to solve for the six variables.

3. (30 pts) Hemoglobin and Linkage

- The molecule 2,3-bisphosphoglycerate (2,3-BPG) controls short-term adaptation to high altitude. It binds to T-state hemoglobin about 250-fold more tightly than it does to R-state hemoglobin. We know that the R and T states also interconvert.
- (a; 8 pts) Given the three equilibria below, provide a linkage argument to show that the equilibrium constant for the interconversion of R•BPG and T•BPG is 25000.

 $R \bullet BPG \rightleftharpoons R + BPG \qquad K_{diss,R} = 3.0 \times 10^{-3} \text{ M} \qquad R \rightleftharpoons T \qquad K_{RT} = 100$ $T \bullet BPG \rightleftharpoons T + BPG \qquad K_{diss,T} = 1.2 \times 10^{-5} \text{ M} \qquad R \bullet BPG \rightleftharpoons T \bullet BPG \qquad K_{RTBPG} = ?$ Show that $K_{RTBPG} = 25000$:

(b; 12 pts) The mathematics of linkage is complicated. We will consider simplified cases and ignore the fact that Hb binds 4 (not 1) molecules of O₂. First, consider oxygen binding in the absence of BPG. The R state binds O₂ about 100 times better than the T state:

$R \bullet O_2 \rightleftharpoons R + O_2$	$K_{0,R} = 1.3 \times 10^{-4}$ atm	(this is a dissociation equilibrium)
$T \bullet O_2 \rightleftharpoons T + O_2$	$K_{0,T} = 1.3 \times 10^{-2}$ atm	(this is a dissociation equilibrium)
$R \rightleftharpoons T$	$K_{RT} = 100$	

If we find in the end that $[R] = 1.5 \mu M$ and $[O_2] = 2.6 \times 10^{-2}$ atm (assumed constant) use the equilibria above to give the concentrations of R•O₂, T, and T•O₂. The calculation is very straightforward: since I give you the equilibrium concentrations of R and O₂ you do not need an ICE table.

Calculate the fraction of the total hemoglobin that is bound to oxygen, i.e. calculate $([R \bullet O_2]+[T \bullet O_2])/([R \bullet O_2]+[T \bullet O_2]+[R]+[T])$.

(c; 10 pts) Next will consider the case when [BPG] is present, at high enough concentration so that all of the hemoglobin is in the BPG-bound form. We will assess the effect of BPG on oxygen binding. We assume that the dissociation constants for the R and T states are the same with and without BPG.

$R \bullet BPG \bullet O_2 \rightleftharpoons R \bullet BPG + O_2$	$K_{O,R} = 1.3 \times 10^{-4}$ atm	same as before
$T \bullet BPG \bullet O_2 \rightleftharpoons T \bullet BPG + O_2$	$K_{0,T} = 1.3 \times 10^{-2}$ atm	same as before
$R \bullet BPG \rightleftharpoons T \bullet BPG$	K_{RTBPG} = 25000	

Based on LeChatelier, circle whether more or less Hb is bound to O_2 in the presence of BPG versus in its absence. If [R•BPG] = 10 nM and $[O_2] = 2.6 \times 10^{-2}$ atm (assumed constant) calculate the concentrations of R•BPG•O₂, T•BPG, and T•BPG•O₂. What fraction of the total hemoglobin is bound to oxygen?

Page	Score
1	/1
2	/20
3	/15
4	/13
5	/12
6	/18
7	/12
8	/10
Total	/101