Chemistry 271, Section 22xx	Your Name:
Prof. Jason Kahn	
University of Maryland, College Park	Your SID #:
General Chemistry and Energetics	Your Section # or day+time:

October 16, 2013

You have 50 minutes for this exam.

Exam I (100 points total)

Exams written in pencil or erasable ink will not be re-graded under any circumstances.

Explanations should be <u>concise</u> and <u>clear</u>. I have given you more space than you should need. There is extra space on the last page if you need it.

You will need a calculator for this exam. No other study aids or materials are permitted.

Partial credit will be given, *i.e.*, if you don't know, guess.

Useful Equations:

$K_a = [H^+][A^-]/[HA]$	$pH = -log([H^+])$	$K_b = [BH^+][HO^-]/[B]$
F = ma	$e^{i\pi} + 1 = 0$	PV = nRT
$K_w = [\mathrm{H}^+][\mathrm{HO}^-] = 10^{-14}$	$pH = pK_a + \log([A^-]/[HA])$	pH (e.p.) = $(pK_{a1} + pK_{a2})/2$
$R = 0.08206 \text{ L} \cdot \text{atm/mole K}$	0 °C = 273.15 K	$\mathbf{p}K_a = -\log(K_a)$
$K_p = K_c (\mathrm{RT})^{\Delta n}$	$P^2/a^3 = 4\pi^2/MG$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Honor Pledge: At the end of the examination time, please write out the following sentence and sign it, or talk to me about it:

"I pledge on my honor that I have not given or received any unauthorized assistance on this examination."

1. (25 pts) Short Answers

(a; 4 pts) Circle the best answer below: The pK_a of $H_2PO_4^{-}$ {written $pK_a(H_2PO_4^{-})$ } is equal to

(i) $14 - pK_b(H_2PO_4^{-})$ (ii) $14 - pK_b(HPO_4^{2-})$ (iii) $1/pK_b(HPO_4^{2-})$ (iv) $14 - pK_a(H_3PO_4)$

(b; 6 pts) Explain your reasoning for (a), in words or equations.

(c; 5 pts) The ideal gas is a useful model system, even though it doesn't exist. Mark each of the statements below true or false:

F
F
F
F
F

(d; 6 pts) Under what conditions does the behavior of real gases approach that of an ideal gas?

(e; 4 pts) Circle the best answer below: "Dynamic equilibrium" means that

- (i) the equilibrium state has equal amounts of reactant and product.
- (ii) the equilibrium constant always increases as temperature increases.
- (iii) at equilibrium, all forward rates are equal to the corresponding reverse rates.
- (iv) None of the above.

2. (20 pts) LeChatelier and Dynamic Equilibrium

Consider the reaction $A + B \rightleftharpoons 2 C$, initially at equilibrium

- (a; 4 pts) When A is added, what is the LeChatelier's principle stress on the equilibrium, and what is the response?
- (b; 8 pts) Use the change in the reaction quotient Q to verify the prediction from LeChatelier, and also demonstrate that the stress on the system will not be completely removed when it returns to equilibrium.

(c; 4 pts) Explain the shift in the equilibrium in terms of changes in the rates of the forward and reverse reactions.

(d; 4 pts) How does the equilibrium shift if the reaction mix is diluted 10-fold, and why?

3. (25 pts) Acid-Base Equilibria

- We will derive a general expression for the pH of a solution of the salt of weak base and a strong acid, like ammonium chloride, NH₄Cl. We assume that the concentration C₀ is large enough so that we can ignore water self-dissociation as a source of protons or hydroxide. We also assume that we know that the weak base $K_b = 10^{-Y}$, so the pK_b = Y. We assume as usual that we can dissolve the species of interest instantaneously, at zero [H⁺] and [HO⁻], and figure out the equilibrium composition starting from there.
- (a; 4 pts) Logic first: Should your answer be < 7 or > 7, and why? How should your answer depend on "*Y*," and why?

(b; 3 pts) Write the base dissociation equilibrium for ammonia in water.

(c; 5 pts) In a solution that initially contains only NH_4^+ ions and CI^- ions, what is the dominant acid-base equilibrium reaction that determines the pH? Calculate its equilibrium constant in terms of *Y*.

(d; 8 pts) Write down the ICE table that gives us $[H^+]$, and solve for $[H^+]$ assuming that the concentration C_0 of ammonium chloride is large with respect to "*x*". Give an expression for the pH.

(e; 3 pts) Calculate the pH of a 125 mM solution of a salt with Y = 4.8 according to your formula.

(f; 2 pts) Do your answers to (d) and (e) agree with your predictions from (a)?

4. (15 pts) Buffers

(a; 6 pts) Explain when the Henderson-Hasselbach can be used to predict the pH of a solution. Why does it break down at the very beginning or the very end of a titration (a separate answer for each)?

(b; 9 pts) Consider a benzoic acid/sodium benzoate buffer made from 60 mM NaOH + 80 mM benzoic acid (pK_a = 4.2). What is the pH? What is the pH if an additional 10 mM NaOH is added? A further additional 30 mM of NaOH?

5. (15 pts) The effect of pH on enzymatic reactions

(a; 6 pts) Glutamic acid 78 (Glu78 or E78) and Glu172 (E172) have been shown to have pK_a's of 4.6 and 6.7, respectively, in the ES complex shown at the top left of the scheme. (The pK_a of the Glu side chain is 3.9 for the free amino acid in solution.) How can you tell from the scheme above that which pK_a goes with which residue? What is a likely cause for the elevated pK_a of 6.7 for Glu172?

(b; 5 pts) The pK_a of Glu172 drops to 4.2 in the covalent Glycosyl-enzyme intermediate shown in the middle on the right side of the Scheme. This "pH cycling" has been proposed to assist in the enzymatic reaction. Explain how the pK_a drops in this intermediate.

(c; 4 pts) Why does the enzymatic activity drop off markedly at basic pH?

Page	Score
2	/25
3	/20
4	/20
5	/20
6	/6
7	/9
Total	/100