Chemistry 271, Section 22xx	Y	our Name:		
Prof. Jason Kahn				
University of Maryland, College P	ark <u>Y</u> o	our SID #:		
General Chemistry and Energetics	\mathbf{Y}	our Section #: (+1 poin	nt)	
Exam II (100 points total)			November 5, 2012	
You have 52 minutes for this exam.				
Exams written in pencil or erasable i				
Explanations should be <u>concise</u> and space on the last page if you need		e given you more space	e than you should need. There is extra	
You will need a calculator for this ex	xam. No ot	her study aids or materi	ials are permitted.	
Partial credit will be given, i.e., if yo	ou don't kn	ow, guess.		
Useful Equations:				
$K_a = [\mathrm{H}^+][\mathrm{A}^-]/[\mathrm{HA}]$	pH = -1	$og([H^+])$	$K_b = [\mathrm{HA}][\mathrm{HO}^-]/[\mathrm{A}^-]$	
$K_{w} = [\mathrm{H}^{+}][\mathrm{HO}^{-}]$	pH = pK	$L_a + \log [A^-]/[HA]$	$\Delta H = q_p$	
$R = 0.08206 \text{ L} \cdot \text{atm/mole K}$	$0 ^{\circ}\text{C} = 2$	73.15 K	$w = -\int P dV$	
$\Delta E = q + w$	R = 8.3	14 J/mole K = 1.98	37 cal/mole K	
$S = k_B \ln W$	$\Delta G = \Delta$	$H-T\Delta S$	$E = \sum n_i \varepsilon_i$	
$W = N!/(\prod n_i!)$		$v_i \exp[-(\varepsilon_i - \varepsilon_0)/kT]$		
$R = N_A k_B$	$k_B = 1.3$	$8 \times 10^{-23} \text{ J/K}$	H = E + PV	
Chemical standard state: 1 M solutes, pure liquids, 1 atm gases				
Honor Pledge: At the end of the examination time, please write out the following sentence and sign it, or talk to me about it:				
"I pledge on my honor that I have not given or received any unauthorized assistance on this examination."				
T proage on my honor that I have not given or received any unaumorized assistance on this examination.				

1. (20 pts) Short Answer/True-False

(a; 10 pts) Fill in the blanks: a(n)	(1) is an instantaneous description of
all the positions, velocities, and electron	nic/vibrational/rotational states of all the particles in a system. A
collection of (1)'s that all have the same	observables like P, V, and T is called a(n)
(2). 7	The set of all possible (1)'s at a given total energy is called the
(3). I	For a macroscopic system, almost all of the (1)'s in a(n) (3) wil
belong to the	member of the set of (2)'s.
(b; 10 pts) Identify whether each of the following false:(i) Energy is distributed among particles such	wing statements about the Boltzmann Distribution is true or
Circle one: True False	I that all particles have the same energy.
(ii) The number of particles with a given ene (ignoring degeneracy). Circle one: True	ergy is an exponentially decreasing function of the energy are False
· ,	ossible number of different possible microstates that have a False
(iv) The B.D. allows us to determine whether likely to be observed than a second particle.	r one particular microstate with a given total energy is more icular microstate. Circle one: True False
(v) The B.D. predicts a Gaussian distribution	n of energy among particles. Circle one: True False

2. (15 pts) Thermochemistry (adapted from Oxtoby)

Zinc is commonly found as the mineral sphalerite, ZnS (s). It must be roasted to give zinc oxide during smelting, according to the reaction below:

$$2 \text{ ZnS (s)} + 3 \text{ O}_2(g) \rightarrow 2 \text{ ZnO (s)} + 2 \text{ SO}_2(g)$$

Calculate the standard enthalpy of reaction ΔH_{rxn}° using data in the table at the right. Why is ΔH_f° of $O_2(g)$ exactly equal to zero? [Note that smelting doesn't occur at 25 °C, but the magic of thermodynamics is that we can calculate the ΔH that would be observed if we could actually do the reaction.]

Heats of Formation (25 °C, 1 atm)		
Substance	ΔH _f ° (kJ/mol)	
$N_2H_4(l)$	50.63	
$NO_2(g)$	33.18	
$N_2(g)$	0	
$H_2O(l)$	-285.83	
$NH_3(g)$	-46.11	
ZnS(s)	-205.98	
ZnO(s)	-348.28	
Zn(s)	0	
$SO_{2}(g)$	-296.83	
S(g)	278.80	
S (s, rhombic)	0	
$O_2(g)$	0	

3. (15 pts) Solubility Equilibria

What is the pH of a saturated solution of silver hydroxide AgOH (s)? What would the [Ag⁺] (aq) ion concentration be if the pH were adjusted to 14 with NaOH?

Aqueous Solubility Products (25 °C)

Heterogeneous Equilibrium	K_{sp}
$Mg(OH)_2(s) = Mg^{2+}(aq) + 2 OH^{-}(aq)$	5.6×10^{-12}
$Ag(OH)(s) = Ag^{+}(aq) + OH^{-}(aq)$	1.52×10^{-8}
$Al(OH)_3(s) = Al^{3+}(aq) + 3 OH^{-}(aq)$	1.9×10^{-33}

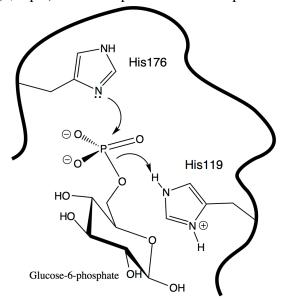
4. (15 pts) Fundamental Thermodynamics

- Consider compressing and ideal gas in a piston by doing work on it, so that we change from an initial (n, P_i, V_i, T_i) to a final (n, P_f, V_f, T_f) state, with $V_f < V_i$ and $P_f > P_i$.
- Path #1: the external pressure is maintained at P_i , which requires that we gradually cool the gas to decrease its volume, for example by packing ice around it. After the volume reaches V_f the gas is warmed up and the pressure increases.
- Path #2: the gas is heated until pressure reaches P_f , and then the system is cooled at constant pressure until V_f is reached.
- Write an expression for the work w1 and w2 required for compression on each path (since we are doing work on the gas, w1 and w2 are positive.
- We do not know enough yet to calculate the change in heat on each path, but we can calculate the difference (q1-q2) in the amount of heat that is transferred. What is q1-q2?

Score f	or the	page
Score 1	or the	page

5. (20 pts) High Energy Bonds

- "High energy bonds" are not somehow spring-loaded to release energy upon bond breakage. Rather, they are "high energy" because there is an available reaction pathway that leads to much more stable products, meaning that at equilibrium we see a large excess of products over reactants.
- (a; 6 pts) Consider the reaction A = B, with $K_1 = 10$. We can calculate the fraction of the A+B mixture found as "A": [B] must be $10 \times [A]$, so the fraction is [A]/([A]+[B]) = 1/(1+10) = 0.099. If we couple the A = B reaction to B = C, with $K_2 = 1000$, similarly calculate the fraction of the A+B+C mixture that is found in the form of "A":


(b; 5 pts) We used ATP as an example of a high-energy molecule. One molecule involved in glycolysis that actually has a higher-energy P-O bond than ATP itself is phosphoenolpyruvate (PEP), below. Draw the products of the hydrolysis reaction that breaks the P-O bond as indicated, assuming that the RO⁻ leaving group picks up a proton from a water molecule so that there is no net consumption or production of protons as written (the other product is HPO₄²⁻, a form of inorganic phosphate "P_i" that is present at pH 7, whereas H₂PO₄⁻ is not).

(c; 9 pts) Now, consider the equilibrium between the *keto* and *enol* forms of carbonyl compounds. K_{eq} for acetone in equilibrium with its *enol* form is about 10^{-7} . Draw the dominant form of the final product, and explain why PEP is a "high energy molecule."

6. (15 pts) Importance of pH for Enzymes

The importance of active site residue pK_a s is not limited to residues whose only job is to provide or abstract protons. For example, the enzyme glucose-6-phosphatase is responsible for hydrolyzing a phosphate group from glucose-6-phosphate to give glucose and inorganic phosphate P_i . [Irrelevant fun fact: The glucose is then shipped out to the bloodstream to maintain blood glucose homeostasis. Deficiency of this enzyme is the cause of glycogen storage disease I or von Gierke's disease.]

(a; 5 pts) Draw the product of the step shown in the mechanism below.

(b; 10 pts) G6Pase exhibits a bell-shaped curve for enzymatic activity vs. pH that is very similar to the one we saw for ribonuclease. Explain why the mechanism does not work if the pH is too high, and separately explain why it does not work if the pH is too low. Which histidine residue will have a lower pKa?

Page	Score
1	/1
2	/20
3	/15
4	/15
5	/15
6	/11
7	/14
8	/10
Total	/101