Chemistry 271, Section 22xx	Your Name:	
Prof. Jason Kahn		
University of Maryland, College Park	Your SID #:	
General Chemistry and Energetics	Your Section #:	
Exam II (100 points total)		November 7, 2011

You have 53 minutes for this exam.

Exams written in pencil or erasable ink will not be re-graded under any circumstances.

Explanations should be <u>concise</u> and <u>clear</u>. I have given you more space than you should need. There is extra space on the last page if you need it.

You will need a calculator for this exam. No other study aids or materials are permitted.

Partial credit will be given, *i.e.*, if you don't know, guess.

Useful Equations:

$K_a = [H^+][A^-]/[HA]$	$pH = -\log([H^+])$	$K_b = [\text{HA}][\text{HO}^-]/[\text{A}^-]$		
$K_w = [H^+][HO^-]$	$pH = pK_a + \log [A^-]/[HA]$	$\Delta G^{\circ} = -RT \ln K_{eq}$		
$R = 0.08206 \text{ L} \cdot \text{atm/mole K}$	0 °C = 273.15 K	$\ln K_{eq} = -\Delta H^{\circ} / (RT) + \Delta S^{\circ} / R$		
$\Delta S - q/T \ge 0$	R = 8.314 J/mole K = 1.98	37 cal/mole K		
$S = k_B \ln W$	$\Delta G = \Delta H - T \Delta S$	$E = \sum n_i \varepsilon_i$		
$W = N! / (\prod n_i!)$	$n_i/n_0 = \exp[-(\varepsilon_i - \varepsilon_0)/kT]$	$N = \sum n_i$		
$R = \mathbf{N}_A k_B$	$k_B = 1.38 \text{ x } 10^{-23} \text{ J/K}$	$t' = t - vx/c^2$		
Chemical standard state: 1 M solutes, pure liquids, 1 atm gases				

$$K_p = K_c (\text{RT})^{\Delta n}$$

 $P^2/a^3 = 4\pi^2/MG$
 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Biochemical standard state: pH 7, all species in the ionic form found at pH 7
nano: 10^{-9}
pico: 10^{-12}
zepto: 10^{-21}

Honor Pledge: At the end of the examination time, please write out the following sentence and sign it, or talk to me about it:

"I pledge on my honor that I have not given or received any unauthorized assistance on this examination."

+1 point extra credit for filling in this box

1. (15 pts) Short Answer				
(2 pts each) Fill in the blanks:				
The Boltzmann distribution describes the distribution of	_ among			
that is observed in each of the				
that comprise the predominant of the	,			
which is all of the microstates available at a given total				
(1 pt each) What is the sign of ΔG for any process that occurs spontaneously at constant P, T?				
This a special case of the (circle one) First Law, Second Law, or Third Law of thermodynamics.				
The free energy has reached a minimum when a system has reached				

2. (15 pts) van't Hoff

(a; 8 pts) Draw a van't Hoff plot for an endothermic disordering reaction. Label the axes, and show how you would determine ΔH° and ΔS° from the plot. If there is a region where the reaction is spontaneous, label it.

(b; 7 pts) From the van't Hoff equation, show that if you know the equilibrium constant at one temperature T_1 , the equilibrium constant at temperature T_2 is given by the following equation:

$$K_2 = K_1 \times \exp\left[\left(\frac{\Delta H^{\circ}}{R}\right)\left(\frac{1}{T_1} - \frac{1}{T_2}\right)\right]$$

3. (20 pts) Boltzmann Distribution

(a; 6 pts) We often speak of "*k*T" as the energy available from thermal motion. What is the population relative to the ground state (n_i/n_0) of a state with an energy of *k*T above the ground state? What about a state with an energy of 10 *k*T?

Boltzmann Distributions at Three Temperatures, N = 10000

(b; 6 pts) The temperatures of the three curves are 400, 800, and 1200 K. Indicate which temperature is which on the graph above, and how do you know?

(c; 2 pts) Identify the ground state populations for each distribution on the graph.

- (d; 3 pts) Sketch in the distribution for T = 1600 K.
- (e; 3 pts) Why are the areas under all four curves the same?

4. (30 pts) Practical Thermodynamics

(a; 25 pts) The water-gas shift reaction [CO (g) + H₂O (g) \neq CO₂ (g) + H₂ (g)] is exothermic, which makes hydrogen production complicated because the syngas reaction that provides the feedstock is done at very high temperature. From the data in the table for 25 °C, calculate ΔH°_{rxn} and ΔS°_{rxn} . Assuming that ΔH°_{rxn} and ΔS°_{rxn} are constant with T, calculate the free energy change ΔG°_{rxn} at 200 °C, the equilibrium constant at 200 °C, and the temperature at which the equilibrium constant is equal to 1.

ΔH°_{f} in kJ/mol	S° in J/(mol K)
$\Delta H_{f}^{\circ}(CO) = -110.5$	S° (CO) = 197.7
$\Delta H_{f}^{\circ}(CO_{2}) = -393.5$	$S^{\circ}(CO_2) = 213.6$
$\Delta \mathrm{H}^{\circ}_{\mathrm{f}}(\mathrm{H}_{2}) = 0$	$S^{\circ}(H_2) = 130.6$
$\Delta H_{f}^{\circ}(H_{2}O, g) = -241.8$	$S^{\circ}(H_2O, g) = 188.8$
$\Delta {\rm H}^{\circ}_{\rm f} ({\rm CH}_4) = -74.8$	$S^{\circ}(CH_4) = 186.2$
$\Delta H_{f}^{\circ}(C, graphite) = 0$	$S^{\circ}(C, graphite) = 5.7$
$\Delta H^{\circ}_{f}(O_{2}) = 0$	$S^{\circ}(O_2) = 205$

(b; 5 pts) Why is choosing the temperature at which to carry out an exothermic reaction often a balancing act? Name another reaction that poses the same challenge.

5. (20 pts) Hemoglobin and Linkage

- Consider the competitive binding of chloride (Cl⁻) and oxygen (O₂) to hemoglobin. We know that the R state of Hb binds O₂ better than the T state. We are told that Cl⁻ binds better to the T state than to the R state.
- (6 pts) Draw the linkage cycle that shows that O_2 binding favors the R state over the T state.

(6 pts) Draw the linkage cycle that shows that Cl⁻ binding favors the T state.

(8 pts) Saturation with O_2 in the lungs tend to drive Cl^- off Hb. Recalling that carbonic anhydrase is located in the red blood cell (RBC), how does chloride release help to accelerate the conversion of H⁺ and bicarbonate back to CO_2 and water so that the CO_2 can be exhaled?

Page	Score
1	/1
2	/23
3	/13
4	/14
5	/25
6	/17
7	/8
Total	/101