Chemistry 271, Section 22xx	Your Name:	
Prof. Jason Kahn		
University of Maryland, College Park	Your SID #:	
General Chemistry and Energetics	Your Section #:	
Exam I (100 points total)		October 12, 2011

You have 50 minutes for this exam.

Exams written in pencil or erasable ink will not be re-graded under any circumstances.

Explanations should be <u>concise</u> and <u>clear</u>. I have given you more space than you should need. There is extra space on the last page if you need it.

You will need a calculator for this exam. No other study aids or materials are permitted.

Partial credit will be given, *i.e.*, if you don't know, guess.

Useful Equations:

$K_a = [\mathrm{H}^+][\mathrm{A}^-]/[\mathrm{H}\mathrm{A}]$	$pH = -log([H^+])$	$K_b = [BH^+][HO^-]/[B]$
F = ma	$e^{i\pi} + 1 = 0$	PV = nRT
$K_w = [\mathrm{H}^+][\mathrm{HO}^-] = 10^{-14}$	$pH = pK_a + \log([A^-]/[HA])$	pH (e.p.) = $(pK_{a1} + pK_{a2})/2$
R = 0.08206 L·atm/mole K	0 °C = 273.15 K	$pK_a = -\log(K_a)$
$K_p = K_c(\mathrm{RT})^{\Delta n}$	$P^2/a^3 = 4\pi^2/MG$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Honor Pledge: At the end of the examination time, please write out the following sentence and sign it, or talk to me about it:

"I pledge on my honor that I have not given or received any unauthorized assistance on this examination."

+1 point extra credit for filling in this box

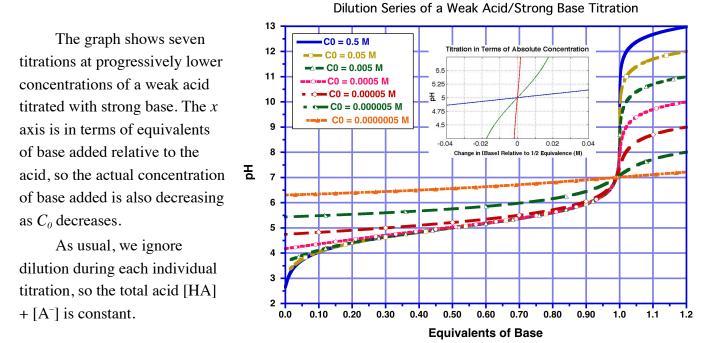
1. (20 pts) Short Answer (2 pts each)			
pH of 1 M HNO ₃	-		
pOH of 0.1 M NaOH	-		
pOH of 0.1 M HOAc (pK _a 4.75) + 0.1 M Nat	OAc		_
pH of 0.001 M NaOH			
$pK_a + pK_b =$	(for K_a and K_b	referring to a	conjugate acid/base pair)
[H⁺] at pH 7	-		
[OH ⁻] at pH 9	-		
When Q < K, the reaction will proceed (circl	e one)	forward.	backward.
The Henderson-Hasselbach relationship is al	ways	, som	etimes

The pH at the first equivalence point of a polyprotic acid titration is given by ______.

2. (30 pts) Acid-Base Equilibria

Consider the pH obtained upon dissolving a weak monoprotic acid HA in water, as a function of its total concentration C_0 and its K_a . This is a problem you have done many times, here we are exploring a general formula. The equilibrium is of course

 $\mathrm{HA} \leftrightarrows \mathrm{H}^{\scriptscriptstyle +} + \mathrm{A}^{\scriptscriptstyle -} \qquad K_a = [\mathrm{H}^{\scriptscriptstyle +}][\mathrm{A}^{\scriptscriptstyle -}]/[\mathrm{HA}]$


(a; 12 pts) Initially, assume that "x" can be ignored in the denominator and show that $pH = \frac{1}{2} \log(K_a \times C_0)$

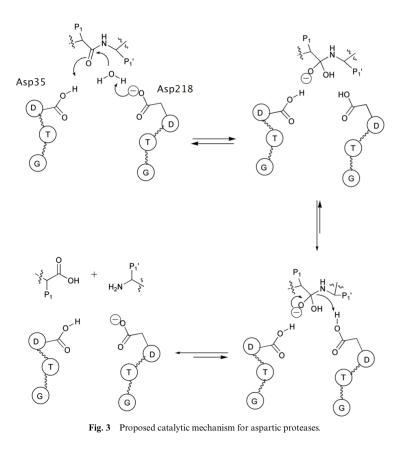
(b; 8 pts) Now, repeat the problem but do not assume that "x" is small, i.e. use the quadratic formula to derive a general formula for the pH

(c; 4 pts) Show that the more complicated expression you just obtained reduces to the simpler expression from (a) if $C_0 >> K_a$. (This gives us a more precise description of exactly when x is negligible in the denominator.)

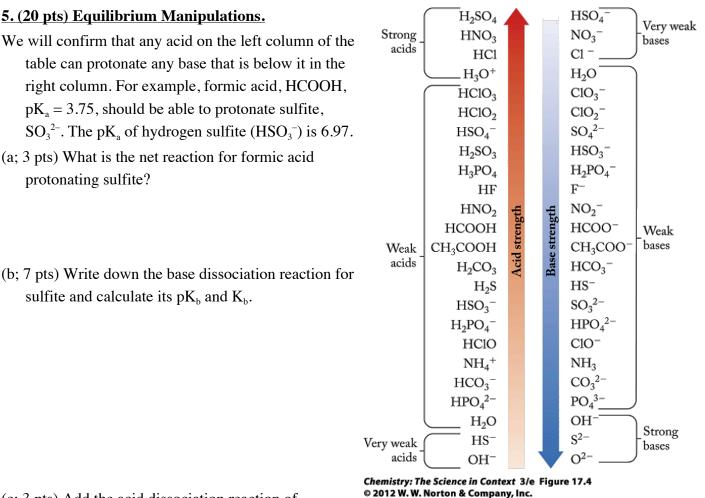
(d; 6 pts) Physically, what happens to the % Dissociation of a weak acid as K_a increases or C_0 decreases? Give an explanation for the C_0 effect based on LeChatelier's principle or the dynamic balance of rates.

3. (20 pts) Buffers and Titration

(a; 6 pts) What is the pK_a of the weak acid being used, and how do you know?


(b; 4 pts) Why does the pH at the equivalence point decrease as C_0 decreases? A qualitative answer is fine.

(c; 4 pts) The graph illustrates the critical features of buffers. How does it show us the utility of "10X" or "100X" reaction buffers in the lab?


(d; 6 pts) Explain why the pH at the end (1.2 equivalents, top right corner) of the $C_0 = 0.5$ M titration is at pH 13.

4. (10 pts) pH effects on Enzymes

The proposed mechanism shown is the essence of catalysis by aspartyl proteases, a class of enzymes that includes HIV protease. They have classic bell-shaped pH rate profiles like those we have seen in class, with pKa's typically at around 3 and 5.

(a; 10 pts) Which residue is associated with the pKa of 3, and what is its function in the mechanism? In other words, why does the reaction fail when it is performed at a pH much below 3? Which residue has pKa = 5, and what is its function? Why does the reaction fail at basic pH?

(c; 3 pts) Add the acid dissociation reaction of

formic acid and the base dissociation reaction of sulfite.

- (d; 3 pts) What other equilibrium do we need to add to give us the net reaction from part a?
- (e; 4 pts) Calculate the overall equilibrium reaction constant for the reaction of part a.

Page	Score
1	/1
2	/20
3	/15
4	/13
5	/12
6	/18
7	/12
Total	/101