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Structural Biology of Nuclear Hormone Receptor Signalling

Reading for Thursday:

Picard and Yamamoto (1987), EMBO J., 6, pp. 3333-3340.
Picard et al. (1990), Nature, 348, pp. 166-168.

Elbi et al. (2004), PNAS, 101, pp. 2876-2881.

Structures of SHR’s bound to DNA:

There are many nuclear hormone receptors, and their half-sites are quite similar. How are
different sites recognized? We can address the recognition of spacing between half sites,
direct vs. inverted repeat sites, and sequence-specific half-site recognition.

Sigler’s group determined the X-ray crystal structure of the glucocorticoid receptor
bound to DNA in Luisi et al., (Nature, 1991).
They made a symmetrized version of the GRE, hoping for ease in crystallization (the unit
cell might contain just one monomer and half the helix).
Natural:
NAGAACANNNTGTTCTN
NTCTTCTNNNACAAGAN
Note inverted repeat.
Symmetrized:
CCAGAACATCGATGTTCTG

GTCTTCTAGCTACAAGACC
4-base spacing
Turned out that the terminal C made a Hoogsteen triple with the last GC base pair (not
uncommon) to help the molecule crystallize.
Surprisingly, the protein bound with one monomer forming specific interactions and one
forming non-specific interactions: the protein dimerization interface dominated over
sequence-specific DNA recognition. It bound DNA non-cooperatively: the decreased free
energy for nonspecific binding compensated for the stabilization from the dimer
interface. (PDB file 1R40.pdb)
They also crystallized a complex with 3-bp spacing:
ICAGAACATCATGTTCTGA

GTCTTCTAGTACAAGACTC in the paper
Vs.
TCAGAACATGATGTTCTCA

GTCTTGTACTACAAGAGTC in the PDB file (IR4R.pdb, submitted 2003))
...I assume there’s a story behind that but I don’t know it.

The 3-base (natural) spacing leads to allosteric mutual stabilization of dimerization and
DNA binding. Other nuclear receptors have different spacing.

There are two Zinc-binding modules with 4 Cys ligands. One forms sequence-specific
DNA contacts, one does dimerization stabilized by phosphate contacts (protein alone is
monomeric at NMR concentrations). Zn stabilizes structure as for classic zinc fingers.



Sigler’s group also crystallized a chimeric GR/ER (estrogen receptor) with the key
specificity-determining amino acids swapped. The residue/helix/domain swap is a classic
experiment in molecular biology. They found that the non-cognate interactions of the ER
residues with the GRE were mediated by a layer of water, whereas the cognate
interactions are typical hydrogen bonding/van der Waals interactions.

Note that it is not known how the different homodimeric steroid hormone receptors
recognize different binding sites! They see the same half-sites and spacing!

Spacing and dimerization specificity:
Mainly from Khorasanizadeh and Rastinejad, TIBS 2001.
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Fig 2. The types of DNA-response elements
used by nuclear receptors. (a) Symmetric

repeats using the consensus half-site 5'—

AGAACA-3’ are used by the glucocorticoid
receptor (GR), progesterone receptor (PR),
androgen receptor (AR) and mineralocorticoid
receptor (MR), each of which is a homodimer.
The estrogen receptor (ER) binds similar
symmetric sites but with consensus 5'—
AGGTCA-3’ half-sites. (b) A ‘1-5 rule’
specifies the use of direct-repeats with variable
spacings by RXR and its many partners
(depicted in red). Some receptors, such as the
vitamin D receptor (VDR) or RevErb, can form
homodimers as an alternative to heterodimers.
The size of the inter-half-site spacing (n) can
vary from one to five base-pairs.[Hence sites
DR1-DR2-DR3-DR4-DR5. Note that RXR can
also be downstream.] (c) Sites containing just

one copy of 5'~AGGTCA-3’ flanked with
specific 5’ sequences (xxx) are used by the
nerve growth factor induced B (NGFI-B)
receptor, RevErb and some other orphan
receptors.




General architecture of nuclear hormone DBD’s:
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Fig. 4. (a) The DNA-binding domains
(DBDs) in the nuclear receptor family
contain a conserved recognition helix
(shown in blue) and a variable C-
terminal extension (CTE) that
continues past the core 66-residue
DBD into the hinge region. Each of
these two elements provides a distinct
DNA-binding surface [35]. (b)The
recognition helix recognizes the major
groove half-sites, with H20O bridging
some of the protein—DNA interactions
(water molecules are shown as dark
circles). (c) By contrast, the CTEs of
RevErb, NGFI-B and TR bind along the
minor groove and backbone of DNA
(Refs [32], [35], [36]).




Recognition of spacing variants:

(a) (b) (c)

(d)

Fig. 3. Structures of complexes between receptor DNA-binding domains and their
cognate DNA-response elements. (a) The GR homodimer bound to a symmetric
target, (b)the NGFI-B bound to its extended monomeric site [30], (¢) the RevErb
homodimer bound to an extended direct-repeat element [35] and (d) three distinct
RXR complexes [as a homodimer on DR1 (Ref. [33]), as a heterodimer with RAR
on DR1 (Ref. [34]) and as a heterodimer with TR on DR4 (Ref. [32])]. Note that
RXR binds only at the upstream half-site on DR4 (with TR), and only at the
downstream half-site on DR1 (with RAR). The cylinders indicate helices, the half-
site spacings are shown in red and protein side chains mediating intersubunit
contacts are shown in yellow.

Spacing recognition is carried out via the RXR-partner dimer interface, which adjusts
depending on RXR’s protein partner and the spacing in question.

Propose that the “CTE’s” or C-terminal extensions are molecular rulers that allow only
one spacing. The binding sites for monomeric DBD’s are too small to confer substantial
affinity without some help from dimerization.

It is surprising how small the interaction interfaces are. The choice of what complexes
assemble is undoubtedly a complicated function of what receptors are present, of possible
interactions between ligand binding domains, of different coreceptor complexes, and so
forth. As usual, biology operates through tuning many weak interactions.




The ligand binding domain
Good source: Nagy and Schwabe, 2004, TIBS 29, p. 317
Structures of Hsp90 bound to drugs are available, but not especially evocative.

We know a lot more about structural changes in the LBD and about how ligand binding
changes the activity of the receptor.

Here the structures are larger and direct superpositions are more informative, so we will
stick with published images.

Overall framework:

LBD’s are all similar. Allows for heterodimerization, rapid evolution to adapt to new or
no ligands. Primarily alpha-helical. Binding pocket is quite diverse, smaller pockets
correspond to more specific receptors like the TR.
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Conformational/dynamic changes upon ligand binding:
RXR alpha was an early example. Ligand binding displaces helix 11, which leads to a
dramatic shift in the position of helix 12. However, may not actually be as dramatic as
shown. (From Egea et al., (2000), EMBO J., 19, 2592).
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holo-RXRa.

Fig. 4. The conformational changes induced by ligand binding in hRXRo. (A) Supenmposition of unliganded (in blue) and liganded (in green)
hRXRo monomers showing the main conformational differences affecting helices H3, H6, H11, H12 and the connecting helix H2. The arrows show
the main structural changes affecting helices H3. H6. H11 and H12 upon hgand binding. The hgand is depicted n yellow and red for carbon and
oxygen atoms, respectively. (B) Superimposition of helices H3. H6. H7, H11 and H12 regions between the ape (in blue) and holo (1n green) forms of
hRXRa. For the sake of clarity other regions have been omitted. The arrows in (A) emphasize the conformational changes occurring upon ligand
binding, showing the binding site closure at the level of the f-10none ring of the ligand molecule. Residues Val265 (H3), Ala337 (H6), Val342 (HT)
and Phe439 (HI1) mnvolved in binding site closure are labelled. The higand is depicted i yellow and red for carbon and oxygen atoms, respectively.
(C and D) Comparison of the holo (in green) versus ape (in blue) hRXRe H3, H6, H11 and H12 regions. The same orientation is used in both views.
In the apo form residues from helix H11 occupy the binding pocket. The higand is depicted in yellow and red for carbon and oxygen atoms,
respectively.



How do receptors interact with coactivators?

Typically corepressors bind to unliganded repressors (would like to have a structure...).
Agonist binding potentiates conformational change in position of helix 12 that allows for
binding the LxxLL motif characteristic of coactivators.

Corepressors and coactivators bind to the same locations, allowing for a clear switchover
of activity upon binding.

Inverse agonists stabilize the repressive state by leading to conformational changes that
cause H12 to block the coactivator binding pocket or stabilize corepressor binding.
Again, the interacting surfaces are all surprisingly small.
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Suggest that dynamical properties of LBD’s may be important in controlling
conformational change:

Ligands make LBD more compact and more rigid. If general, helps to explain how ligand
competes with Hsp90 for LBD binding.
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