You have 53 minutes for this exam.
Explanations should be concise and clear. There is extra space on the last page if you need it.
You will need a calculator for this exam. No other study aids or materials are permitted.
Generous partial credit will be given, i.e., if you don’t know, guess.

Useful Equations:

\[K_a = \frac{[H^+][A^-]}{[HA]} \]
\[\text{pH} = -\log([H^+]) \]
\[(P-nb)(P+an^2/V^2) = nRT \]

\[R = 0.08206 \text{ L} \cdot \text{atm/mole K} \]
\[k_B = 1.38 \times 10^{-23} \text{ J/K} \]
\[\ln K_{eq} = -\Delta H^\circ/(RT) + \Delta S^\circ/R \]

\[R = 8.314 \text{ J/mole K} = 1.987 \text{ cal/mole K} = N_A k_B \]
\[\ln k = \ln A - E_a/(RT) \]

\[^\circ C = ^\circ K - 273.15 \]
\[P(v)dv = Cv^2 \exp(-mv^2/2kT) \]
\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

\[K_p = K_c(\frac{RT}{\Delta n}) \]

Mass of H: 1.008 g/mole

\[E = mc^2 \]

Integrated rate laws for 0, 1, 2 order:

\[[A] = [A]_0 - kt \]
\[\ln[A] = \ln[A]_0 - kt \]
\[1/[A] = 1/[A]_0 + kt \]

\[t_{1/2} = \frac{[A]_0}{2k} \]
\[t_{1/2} = \ln2/k \]
\[t_{1/2} = 1/(k[A]_0) \]

\[N = R_\epsilon \cdot f_p \cdot n_e \cdot f_t \cdot f_i \cdot f_e \cdot L \]

\[PV = nRT \]

Honor Pledge: At the end of the examination time, please write out the following sentence and sign it, or talk to me about it:

“I pledge on my honor that I have not given or received any unauthorized assistance on this examination.”
1. **Chemical Equilibrium and Gas Laws (40 pts)**

The equilibrium constant for the endothermic reaction \(\text{H}_2(g) + \text{I}_2(s) \rightleftharpoons 2 \text{HI}(g) \) is \(K_c = 1.37 \times 10^{-4} \), at 25 °C.

(a; 8 pts) Write down the reaction quotient \(Q \) expression in terms of partial pressures, and calculate the value of \(K_p \) at 25 °C.

(b; 12 pts) Gaseous \(\text{H}_2 \) is added to excess solid iodine in a 5 L container, and the equilibrium partial pressure at 25 °C of \(\text{H}_2 \) is found to be \(P_{\text{H}_2} = 0.92 \) atm. Calculate the number of moles and the mass of \(\text{H}_2 \) that are present at equilibrium. What is the equilibrium partial pressure of \(\text{HI} \)? What is the ratio of \((\text{the average kinetic energy per molecule of the HI molecules})/(\text{the average kinetic energy per molecule of the H}_2 \text{ molecules})\)?

Score for the page______________
(c; 12 pts) Excess solid I₂ is added to a separate 5 L container initially filled with 3.80 atm of H₂, with the vessel maintained at constant volume and 25 °C. How do you know in advance that the final total pressure in the container will be more than 3.80 atm? Set up but do not solve the quadratic equation that would give you the final partial pressure of HI.

(d; 3 pts) How would the partial pressures change if more excess solid I₂ were added to either container?

(e; 5 pts) If the volume of either container is increased at constant temperature, which way will the equilibrium shift? If the temperature is increased, will the equilibrium constant increase or decrease?
2. Chemical Kinetics (48 pts)
The Zeldovich mechanism describes the oxidation of N_2 gas by O_2 in internal combustion engines, which is a source of smog. Here is the overall reaction:

$$N_2 (g) + O_2 (g) \rightarrow 2 \text{NO} (g)$$

for which the observed rate law is

$$\frac{d[\text{NO}]}{dt} = k [O_2]^{1/2} [N_2]$$

(a; 6 pts) How do you know from just glancing at the rate law that the reaction is not elementary? What are the units of the k in the rate law?

We will evaluate a simplified version of the proposed mechanism. First, we assume that O atoms are produced by collisions between molecular O_2 and collision gas M, at the high temperature of the combustion chamber (~ 2000 K), according to the reaction below, so that O atoms are maintained at a constant pseudo-equilibrium concentration:

$$K_O$$

$$O_2(g) + M \rightleftharpoons O(g) + O(g) + M$$

Here are the two steps for N_2 oxidation. The nitrogen atom N is treated as a steady state intermediate.

Step 1 \hspace{1cm} O (g) + N_2 (g) \rightarrow \text{NO} (g) + N (g) \hspace{1cm} \text{Slow, rate constant } k_1$

Step 2 \hspace{1cm} N (g) + O_2 (g) \rightarrow \text{NO} (g) + O (g) \hspace{1cm} \text{Fast, rate constant } k_2$

(c; 6 pts) Write down the differential rate law for the formation of NO as a function of $[O], [O_2], [N], [N_2]$, and k's.
(d; 11 pts) Write down the differential rate law for \([N]\). Solve for the steady state \([N]\) as a function of \([N_2]\), \([O]\), \([O_2]\), and \(k\)’s. Explain why the second step must to be fast for us to apply the SSA.

(e; 13 pts) Substitute your answers for (b) and (c) into your answer for (d) to give the rate law for NO as a function of \([N_2]\), \([O_2]\), \(K_o\), and \(k\)’s. Hint: at the beginning of the problem I told you what it should look like. Explain why your answer does not (or should not) include the rate constant \(k_2\) or the concentrations of \([N]\) and \([O]\).
(f; 7 pts) Independent question: The activation energy for the rate limiting step (k_i) is 314 kJ/mole, and the pre-exponential factor $A = 4.03 \times 10^{10}$ (with appropriate units). What is the rate constant k_i at 2000 K? What is it at 500 K?

3. LeChatelier’s principle (12 pts)
Here is a picture like the ones we looked at in class, generated using Matlab, for the reaction $2 \text{A} \rightleftharpoons \text{B}$.
(a; 12 pts) At time 18, we add more “A” to the reaction mixture – note that the P(A) line in the top panel pops up. Explain (i) why the “Rate of forming B” line in the middle panel increases rapidly, (ii) why it subsequently decays, and (iii) why the line for “Rate of Forming B” changes (up and down) so much more markedly than the line for “Rate of Forming A” throughout the middle panel. Finally, (iv) explain why the value of Q decreases upon compression at 33 min.